这就是毕达哥拉斯学派对“圣四”的祷文,提起四,人们便能想起许多与四有关的事情,如一年有四季,春夏秋冬,地理有四方:东南西北;汉语拼音中有四声:阴平,阳平,上声,去声;*牌有四个花样:红桃,黑桃,方块,梅花;人体有四肢,建筑上有四合院,动物中有四不象,古有四书,四大古典小说,民间有四大传说,汉字书法有四体。这些无不说明四在人类生活中应用之广泛,联系之密切。
横向两直线与纵向两直线必然构成一个矩形,也就是两条具有广阔的宁静的水平线,与两条具有上腾和挺拔美的纵线,可以构成一个方方正正、整整齐齐,四方对称的图形,这也许是长方形被人们喜欢的缘故吧,长方形具有四条边,四个角,而这四个角都是直角,而用长方形可以无缝隙的铺满地面,将许多长方面排在一起,又是那样的整齐好看,人们生活中创造出了许多与长方形有关的作品,如国旗、办公桌、书本、像棋盘等,看来数四与直角的关系特别亲近,是因为周角的四分之一为直角吗?或是国为具有四个角的矩形有四个直角?在直角坐标系中,有四个坐标轴,四个象限,这是直角与四在平面坐标系下共同创造了一种和谐的美。
4,作为自然数在数学领域里,有其独特的性格与规律,4居3之后,居5之前,4的左邻右舍3与5都是质数,而4却是自然数中第二个平方数,它有三个约数:1,2,4,是一个等比数列,所以4是一个合数,又是一个小的不是质数的偶数,2作为它的因数,与它有着天生的不解之缘,4的一半是2,2加2,2乘2,2的2次幂其结果都是4,4还与它的左邻右舍3与5有佳的合作:即32+42=52,被人们赞美不已,它是发现勾股定理的线索、萌芽及启示。
【篇二】
1+2+3+……+97+98+99+100=?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:
1+2+3+4+……+96+97+98+99+100
100+99+98+97+96+……+4+3+2+1
=101+101+101+……+101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于<5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才。