虚拟足球盘口

时间:2020-03-13 15:54:00   来源:无忧考网     [字体: ]
【#虚拟足球盘口# #虚拟足球盘口#】生命,需要我们去努力。年轻时,我们要努力锻炼自己的能力,掌握知识、掌握技能、掌握必要的社会经验。机会,需要我们去寻找。让我们鼓起勇气,运用智慧,把握我们生命的每一分钟,创造出一个更加精彩的人生。®无忧考网虚拟足球盘口频道为你整理了《虚拟足球盘口》,希望可以帮到你!

虚拟足球盘口(一)


一、曲线运动

(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。

(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。

(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。

二、运动的合成与分解

1、深刻理解运动的合成与分解

(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

运动的合成与分解基本关系:

1、分运动的独立性;

2、运动的等效性(合运动和分运动是等效替代关系,不能并存);

3、运动的等时性;

4、运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)

(2)互成角度的两个分运动的合运动的判断

合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。

①两个直线运动的合运动仍然是匀速直线运动。

②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。

③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。

2、怎样确定合运动和分运动

①合运动一定是物体的实际运动

②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。

③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。

3、绳端速度的分解

此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)

4、小船渡河问题

(1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,

(2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.

所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。

(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.

虚拟足球盘口(二)

一、形变

1、形变:物体的形状或体积的改变。

2、形变的种类:弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)3、弹性限度:若物体形变过大,超过一定限度,撤去外力后,无法恢复原来的形状,这个限度叫弹性限度。

二、弹力

1、定义:发生形变的物体,由于要恢复原状,会对跟它接触的物体产生的力的作用,这种力叫弹力。

2、产生条件:1.两物体必须直接接触,2量物体接触处有弹性形变(弹力是接触力)。

3、方向:弹力的方向与施力物体的形变方向相反。

4、弹力方向的判断方法

(1)弹簧两端的弹力方向,与弹簧中心轴线重合,指向弹簧恢复原状的方向。其弹力可为拉力,可为压力;对弹簧秤只为拉力。

(2)轻绳对物体的弹力方向,沿绳指向绳收缩的方向,即只为拉力。

(3)点与面接触时弹力的方向,过接触点垂直于接触面(或接触面的切线方向)而指向受力物体。

(4)面与面接触时弹力的方向,垂直于接触面而指向受力物体。

(5)球与面接触时弹力的方向,在接触点与球心的连线上而指向受力物体。

(6)球与球相接触的弹力方向,沿半径方向,垂直于过接触点的公切面而指向受力物体。

(7)轻杆的弹力方向可能沿杆也可能不沿杆,杆可提供拉力也可提供压力。(8)根据物体的运动情况,动力学规律判断.

说明:

①压力、支持力的方向总是垂直于接触面(若是曲面则垂直过接触点的切面)指向被压或被支持的物体。

②绳的拉力方向总是沿绳指向绳收缩的方向。

③杆既可产生拉力,也可产生压力,而且能产生不同方向的力。这是杆的受力特点。杆一端受的弹力方向不一定沿杆的方向。

5、弹力的大小:与形变量有关,遵循胡克定律。①弹簧、橡皮条类:它们的形变可视为弹性形变。

三、胡克定律:

(在弹性限度内)F=kx

上式中k叫弹簧劲度系数,单位:N/m,跟弹簧的材料、粗细,直径及原长都有关系;由弹簧本身的性质决定。X是弹簧的形变量(拉伸或压缩量)切不可认为是弹簧的原长。

四、弹力有无判断

(1)拆除法:即解除所研究处的接触,看物体的运动状态是否改变。

若不变,则说明无弹力;若改变,则说明有弹力。

(2)假设法:假设在接触处存在弹力,做出受力图,

再根据力和运动关系判断是否存在弹力。

(3)根据力的平衡条件来判断。