沙巴独家

时间:2019-12-09 15:40:00   来源:无忧考网     [字体: ]

【#沙巴独家# #沙巴独家#】沙巴独家新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。今天®忧考网为各位同学整理了《沙巴独家》,希望对您的学习有所帮助!

沙巴独家(一)


1.并集

(1)并集的定义

由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B的并集,记作A∪B(读作"A并B");

(2)并集的符号表示

A∪B={x|x∈A或x∈B}.

并集定义的数学表达式中"或"字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.

x∈A,或x∈B包括如下三种情况:

①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.

由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现一次,因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.

例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.

2.交集

利用下图类比并集的概念引出交集的概念.

(1)交集的定义

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作"A交B").

(2)交集的符号表示

A∩B={x|x∈A且x∈B}.

沙巴独家(二)


1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;