1.王老师给小李、小杨、小刘各一张卡片,上面分别写着19□,81□,67□,小李、小杨和小刘分别在自己卡片上的□中填入一个数码得到一个三位数交给王老师。王老师发现,无论如何排列,这三个三位数形成的九位数除以13的余数都是11,那么他们三人在□中填入的三个数字之和为多少?
2.一根红色的长线,将它对折,再对折,……,经过m次对折后将所得到的线束从中间剪断,得到一些红色的短线;一根白色的长线,经过n次对折后将所得到的线束从中间剪断,得到一些白色的短线(m>n)。若红色短线的数量与白色短线的数量之和是100的倍数,问红色短线至少有多少条?
3.20 08 ,甲乙在上面的 中填入数字,甲填前两个,乙填后两个,甲先填,乙后填,如果所得的8位数是101的倍数则乙胜利,否则甲胜利。那么谁将取得胜利?
4.一根长为L的木棍,用红色刻度线将它分成m等份,用黑色刻度线将它分成n等份(m>n)。
(1)设X是红色与黑色刻度线重合的条数,请说明:X+1是m和n的公约数;
(2)如果按刻度线将该木棍锯成小段,一共可以得到170根长短不等的小棍,其中最长的小棍恰有100根。试确定m和n的值。
5.在1,2,3,…,99,100这100个数中,有一些是3的倍数,如3,6,9,12,15,…;也有一些是5的倍数,如5,10,15,20,25,….在这些3的倍数和5的倍数中各取一个数相加,一共可以得到多少个不同的和?
6.一个两位数,当它分别乘以1、2、3、4、5、6、7、8、9时,所得9个乘积,每个乘积的各位数字的和都相等.则满足条件的两位数是__________.
7.M、N是互为反序的两个三位数,且M > N.如果M和N的公约数是21,求M.
8.一个数与它的反序数的乘积是155827,则这个数与它的反序数之和是_________.
9.以[x]表示不超过x的整数,设自然数n满足
则n的最小值是多少?
10.已知a是各位数字相同的两位数,b是各位数字相同的两位数,c是各位数字相同的四位数,且 .求所有满足条件的(a,b,c).