直线:可以向两端无限延伸;没有端点。读作:直线AB或直线BA。
线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。
射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)
2、画直线。
过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。
3、明确两点之间的距离,线段比曲线、折线要短。
线段的长度即是线段的两个端点之间的距离。
两点之间所有连线中点段最短。
4、直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。
精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。
2、用四舍五入法保留近似数的方法。
首先确定要精确到哪一位(即四舍五入到哪一位),先找到这一位数,并在其下方点一点做上标记,要舍还是入,要看这一位数的后一位数,如果后一位数是0、1、2、3、4则是四舍,如果是5、6、7、8、9则是五入的情况,则必须把做标记的数+1,不管是舍还是入,做记号的数的后面有几位数就都用0去代替他们。
如精确到万位,只看千位,精确到亿位,只看到千万位。
2.请用“一定、可能、不可能”来说一说。
一定:太阳一定从东边升起;月亮一定绕着地球转;地球一定每天都在转动;每天一定都有人出生;人一定要喝水……
可能:三天后可能下雨;花可能是香的;明天可能有风;下周可能会考试。……
不可能:太阳不可能从西边升起;地球不可能绕着月亮转;我不可能从出生到现在没吃过一点东西;鲤鱼不可能在陆地上生活;空中不可能盖楼房;我不可能比姐姐大……
比较两个零下的温度的高低:0℃和零上的温度高于零下的温度;零下温度的数字越大表示温度越低。
2、正数:比0大的数字都是正数,有的时候我们在正数前面添上“+”号,如+5、+20等等,读作:正5、正20。
负数:比0小的数字都是负数,我们在负数前面提案上“—”号,如—2、—10等等,读作:负2、负10。
明确0既不是正数也不是负数。
路程=速度×时间时间=路程÷速度速度=路程÷时间
2、了解被除数、除数和商之间的关系:
被除数÷除数=商......余数
被除数=除数×商+余数
除数=被除数÷商......余数
3、单价、数量、总价之间的关系:
单价×数量=总价
单价=总价÷数量
数量=总价÷单价
4、商不变的规律:
被除数和除数同时乘或除以相同的数(0除外),商不变
a+b=b+a
2.加法结合律:三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。用字母表示为:
(a+b)+c=a+(b+c)
3.在连加计算中,当某些加数相加可以凑成整十、整百、整千的数时,运用加法运算律可使计算简便。
口诀:连加计算仔细看,考虑加数是关键。整十、整百与整千,结合起来更简单。交换定律记心间,交换位置和不变。结合定律应用广,加数凑整更简便。
4.减法的运算性质
一个数连续减去两个数等于这个数减去这两个减数的和。用字母表示:
a-b-c=a-(b+c)
减法的运算性质
一个数减去两个数的和等于这个数连续减去和里每个加数。
5.乘法的交换律和结合律
(1).乘法交换律:两个数相乘,交换乘数的位置,积不变。用字母表示为:
a×b=b×a
(2).乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘;或者先把后两个数相乘,再和第一个数相乘,积不变。用字母表示为:
(a×b)×c=a×(b×c)
6.应用乘法运算律进行简便计算
在连乘计算中,当某两个乘数的积正好是整十、整百、整千的数时,运用乘法运算律可使计算简便。
运用分解的方法,将某个乘数拆分成几个数相乘的形式,使其中的乘数与其他乘数的乘积“凑整”。
乘除的规律:先乘后除等于先除后乘。
除法的运算性质:(1)一个数连续除以两个数(每次都能除尽)等于这个数除以这两个除数的积。
除法的运算性质:(2)一个数除以两个数的积等于这个数连续除以积里每个乘数。
7.乘法分配律
乘法分配律特别要注意“两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加”中的分别两个字。
注意:(1)一定要括号外的数分别乘括号里的两个数,再把积相加。乘法对于减法的分配律是括号外的数分别乘括号里的两个数,再把积相减。
(2)两个积中相同的因数只能写一次)
2、认识方向:东、南、西、北、东南、东北、西南、西北。
3、根据方向和距离确定物体位置的方法:
(1)以某一点为观测中心,标出方向,上北、下南、左西、右东;将观测点与物体所在的位置连线;用量角器测量角度,最后得出结论在哪个方向上。
(2)用直尺测量两点之间的图上距离。
2.当角的两边旋转成一条直线时,这时所形成的角叫做平角;当角的两边经过旋转重合时,这时所形成的角叫做周角。
3.角有一个尖尖的顶点两条直直的边,角的大小与张口有关,张口越大角就越大,张口越小角就越小,角的大小与边的长短无关。
4.小于90度的角是锐角,等于90度的角是直角,大于90度小于180度的角是钝角,等于180度的角是平角,等于360度的角是周角。
5.认识度。将圆平均分成360份,把其中的1份所对的角叫做1度,记作1°,通常用1°作为度量角的单位。
6.认识量角器。量角器是把半圆平均分成180份,一份表示1度。量角器上有中心点、0刻度线、内刻度线、外刻度线。
7.量角器的使用方法。“两合一看”,“两合”是指中心点与角的顶点重合;0刻度线与角的一边重合。“一看”就是要看角的另一边所对的量角器的刻度。
8.看角的度数时要注意是看外刻度还是内刻度。角的开口向左看外刻度线,角的开口向右看内刻度线。
直线没有端点,可以向两个方向无限延伸;
射线有一个端点,只能向一个方向无限延伸;
线段有端点,不能向两个方向无限延伸。
2.过一点可以画无数条直线,过两点只能画一条直线,两点之间线段最短。
3.平行线:在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
4.一条直线的平行线有无数条,过线外一点作平行线,只能画一条。
5.两条平行线之间的距离处处相等,两条平行线之间的垂线段就是他们的距离。
6.相交:如果两条直线只有一个公共点,这两条直线叫相交直线。
7.垂直:两条直线相交成直角时,叫做两条直线相互垂直。两条直线互称为对方的垂线。
8.一条直线的垂线有无数条,过线外一点作已知直线的垂线只能画一条。
9.从直线外一点到这条直线所画的垂直线最短,它的长度叫作这点到直线的距离。
10.当两条直线相交成直角时,这两条直线互相垂直。其中一条线是另一条线的垂线,这时两条直线的交点叫作垂足。
2、十进制计数法:相邻两个计数单位之间的进率是十,也就是十进制关系。
3、数数:能一万一万地数,十万十万地数,一百万一百万地数……
4.亿以内数的读数方法:含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在每级末尾的零不读,在每级中间的零必须读。中间不管有几个零,只读一个零。
5.亿以内数的写数方法:从高位写起,按照数位的顺序写,中间或末尾哪一位上一个也没有,就在那一位上写0。
6.比较数大小的方法:多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
7.改写以“万”或“亿”为单位的数的方法:以“万”为单位,就要把末尾的四个0去掉,再添上万字;以“亿”为单位,就要把末尾八个0去掉,再添上亿字。
8.用四舍五入法保留近似数的方法:根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。