建筑耐火等级,是衡量建筑耐火程度的标准,火灾实例说明,耐火等级高的建筑,火灾时烧坏、倒塌的很少,造成的损失也小,而耐火等级低的建筑,火灾时不耐火,燃烧快,损失也大。因此,为了保证建筑物的安全,必须采取必要的防火措施,使之具有一定的耐火性,即使发生了火灾也不至于造成太大的损失。另外,在灭火时应根据建筑耐火等级,充分利用各种有利条件,赢得时间,有效地控制火势发展,顺利地扑灭火灾。
大量火灾表明,风、湿度、气温、季节等气象条件对火势的发展和蔓延都有一定程度的影响,其中以风和湿度影响。
风对火势发展有决定性影响,尤其对露天火灾,受风的影响更大。风速愈大,对流速度愈快,燃烧和蔓延速度也愈快;风向改变,燃烧、蔓延方向也会随之改变。一般而言,火向顺风蔓延。但火场上的风向并不很稳定,火灾初起与火灾发展阶段时的风向有时并不一致,可能会受到燃烧产生的热对流影响,出现反方向的强风,形成火的旋涡。大风天会形成飞火,迅速扩大燃烧范围。
可燃材料的含水率与空气的湿度有关。干燥的可燃材料易起火,燃烧速度也快;潮湿的可燃材料不易起火。众所周知,在雨季,许多物体都呈潮湿状态,着火的可能性相对减小。在干燥的季节,风干物燥,易于起火成灾,也易蔓延。
热总是从温度较高部位,向温度较低部位传导。温度差愈大,导热方向的距离愈近,传导的热量就愈多。火灾现场燃烧区温度愈高,传导出的热量就愈多。
固体、液体和气体物质都有这种传热性能。其中固体物质是的热导体,液体物质次之,气体物质较弱。其中金属材料为热的优良导体,非金属固体多为不良导体。
在其他条件相同时,物质燃烧时间越长,传导的热量越多。有些隔热材料虽然导热性能差,但经过长时间的热传导,也能引起与其接触的可燃物着火。
实验证明:一个物体在单位时间内辐射的热量与其表面积的绝对温度的四次方成正比。热源温度愈高,辐射强度越大。当辐射热达到可燃物质自燃点时,便会立即引起着火。
受辐射物体与辐射热源之间的距离越大,受到的辐射热越小。反之,距离愈小,接受的辐射热愈多;辐射热与受辐射物体的相对位置有关,当辐射物体辐射面与受辐射物体处于平行位置时,受辐射物体接受到的热量;物体的颜色愈深、表面愈粗糙,吸收的热量就愈多;表面光亮、颜色较淡,反射的热量愈多,则吸收的热量就愈少。当火灾处于发展阶段时,热辐射成为热传播的主要形式。
热对流是影响初期火灾发展的最主要因素。实验证明:热对流速度与通风口面积和高度成正比。通风孔洞愈多,各个通风孔洞的面积愈大、愈高,热对流速度愈快;风能加速气体对流。风速愈大,不仅对流愈快,而且能使房屋表面出现正负压力,在建(构)筑物周围形成旋风地带;风向改变,会改变气体对流方向;燃烧时火焰温度愈高,与环境温度的温差愈大,热对流速度愈快。